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We prove that scalar conformal transformations can convert the variational prin- 
ciple of the propagating torsion theory into the variational principle of general 
scalar-tensor theory, and show that scalar-tensor theory is conformally equivalent 
to propagating torsion theory. 

Harrison (1972) has proved that scalar-conformal transformations not 
only interconvert the various versions of the scalar-tensor theory [except the 
scalar-tensor theory with short-range term, such as the models suggested 
by O'Hanlon (1972) and Xu (1989a,b)], but also convert the scalar-tensor 
variational principle into the variational principle of general relativity. It 
is the purpose of this brief report to further show that scalar-conformal 
transformations can convert the variational principle of the propagation 
torsion theory into the variational principle of general scalar-tensor theory 
which is given by Harrison. This means that scalar-tensor theory may be 
embedded in the propagating torsion theory. 

In the Riemann-Cartan spacetime U4, the connection is 

F k - l k ~ - g i y  ~ (1) 
'+ -  [o'J 

where {~} is the Christoffel symbol and 

K//k = _&k+ S~u + S~i (2) 

1Department of Physics, Hubei University, Wuhan, Hubei, China. 

1263 
0020-7748/91/0900-1263506.50/0 4~ 1991 Plenum Publishing Corporation 



1264 Xu and Chen 

is the contorsion tensor, and 

s k _ _  1 i r k  _ _  k u - 2 , ~ u  U,) (3) 

is the torsion tensor. The Ricci tensor is 

a Ki/+ K k t - K  O. R~ = Ra(  { . } ) - ~ x  l ~ x  j Kit - ij lk 

+ Kuk Kk/ + { k } K~/ + K,,~ { l j  } - K, tk K~/ (4) 

where Ru( { �9 } ) is the Ricci tensor in Riemann spacetime V4, namely, the 
Ricci tensor with respect to the Christoffel symbol. There exist two identical 
equations in the Riemann-Cartan spacetime U4 as follows: 

G kj;k_ 2G~Sk/= 2GklSk/+ RikoTikt (5) 

2 To/;l = G o" - Ggi + 4StkgSi/ (6) 

where 

vo k = so ~ + a~&, ' -  a)s , ;  (7) 

is the modified torsion tensor and 

G i _ t ~ i  1 , ~ i t ~  j - ~ , j - > , + , .  (8) 

is the Einstein tensor. The semicolon " ;"  denotes covariant derivative with 
respect to the connection F}. 

We take the torsion tensor as follows: 

- '  ~ ~ ) A , )  Sij - ~b(6t A o -  (9) 

where A = In ~, ~. is the scalar function, and A is called the torsional poten- 
tial. The comma ...., indicates the usual derivative, b is a parameter which 
is independent of  the spacetime point. Substituting equation (9) into equa- 
tion (6), we obtain the symmetry as follows: 

G o. = Gj,, R,j = R+~ ( 1 O) 

Substituting equation (9) into equation (5) and using the symmetry 
(10), we obtain the identical equation 

Glill= 2bRilAj (11) 

where the vertical bar symbol "1" denotes the covariant derivative using only 
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the Christoffel symbols of the metric. Substituting equation (9) into equation 
(4), we get 

Ru=R,~( { �9 })+2bA,ilj+bgoA'~ik+2bZ(A,iAj-guA'~A,~) (12) 

We thus have the curvature scalar 

R = R({ .  } ) - 6b2A'~A k + 6bA'kl~ (13) 

and the Einstein tensor 

G;j= G•({ �9 })+2bA,ilj-2bguA'klk+bZ(2A,~Aj+gijA'~A,k) (14) 

where R({ .  } ) and Go.({. } ) are the curvature scalar and the Einstein tensor, 
respectively, with respect to the Christoffel symbol. Substituting equations 
(12) and (14) into equation (11), we obtain the identical equation 

�9 } (15) 

The variational principle of the new propagating torsion theory is 

5S = 5 f (g + kL)~/Zg d4x 

f [R({. } ) - 6bZA'kA ~ + kL] , f~  d4x (16) 5 

where L is the matter-Lagrangian density, k is a coupling constant. Here we 
have discarded the divergence term in equation (13). 

Applying in succession to equation (16) the scalar-conformal 
transformations 

~=~0 s (17) 

gu-- (P~,J (1 S) 

and also using 

L(g~) = q~-r/7(~u) (19) 

after discarding a divergence term, we can write equation (16) as 

~S=(~ f [q~tR({ " ) )+].l~O'-2(p'k(p,k+k(pBZ,](--g)l/2 d4x=O (20) 

in which ~o is the scalar function; s, t, and r are constants; and 

/1 = 3(�89 2 - 2bZs z) 
(21) 

B= 2 t - r  
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Applying equat ion (18) to equat ion (15), we get that  

Gi~({ �9 } )lk=O (22) 

Independent  variat ion in g,~ and rp of  equat ion (20) gives the field equat ions 

Ro( { �9 } ) - ~ o k ( {  �9 } ) - tq~-' (~p.,u- go[S]q~) - (t 2 - t - U) r 

+ (t 2 - t - �89 - =qg"~o,,- �89 B-  t T  o. = 0 (23) 

t /~({.  } ) - i . t ( t - 2 ) q ~ - 2 q r k q ~ , ~ - 2 1 , q ~ - ' [ Z ] q ~ + k B q g " - ' s  (24) 

where 

Lj= 1 e((-g)s (2s) 
(_g)  , /2 ggij 

is the energy-momentum tensor o f  matter .  Substi tuting equat ions (23) and 
(24) into equat ion (22), we obtain the following equat ion:  

1 ~ , - S ]  B ~ , /  - j  1 

- - 7  

+�89 0 (26) 

Equat ions  (20)-(26)  are o f  the same forms as Harr ison 's  results. I f  t = 1, s = 
1, r = 2 ,  a n d / 1 = - c o ,  then B = 0 ,  b 2= (2co+3) /12,  and equat ions (20)-(26)  
reduce to the Brans-Dicke  (1961) theory.  Therefore ,  scalar-tensor theory is 
conformal ly  equivalent  to the propagat ing  torsion theory.  The  scalar field 
plays the torsional  potent ial  role. The  torsion can propagate  in vacuum. 
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